A Practical Guide to Forecasting Financial Market Volatility金融市场挥发性预测实用指南 epub 下载 pdf 网盘 2025 mobi 在线 免费

A Practical Guide to Forecasting Financial Market Volatility金融市场挥发性预测实用指南精美图片
》A Practical Guide to Forecasting Financial Market Volatility金融市场挥发性预测实用指南电子书籍版权问题 请点击这里查看《

A Practical Guide to Forecasting Financial Market Volatility金融市场挥发性预测实用指南书籍详细信息

  • ISBN:9780470856130
  • 作者:暂无作者
  • 出版社:暂无出版社
  • 出版时间:2005-06
  • 页数:236
  • 价格:847.50
  • 纸张:胶版纸
  • 装帧:精装
  • 开本:16开
  • 语言:未知
  • 丛书:暂无丛书
  • TAG:暂无
  • 豆瓣评分:暂无豆瓣评分
  • 豆瓣短评:点击查看
  • 豆瓣讨论:点击查看
  • 豆瓣目录:点击查看
  • 读书笔记:点击查看
  • 原文摘录:点击查看
  • 更新时间:2025-01-18 19:50:22

内容简介:

Financial market volatility forecasting is one of today's most important areas of expertise for professionals and academics in investment, option pricing, and financial market regulation. While many books address financial market modelling, no single book is devoted primarily to the exploration of volatility forecasting and the practical use of forecasting models. A Practical Guide to Forecasting Financial Market Volatility provides practical guidance on this vital topic through an in-depth examination of a range of popular forecasting models. Details are provided on proven techniques for building volatility models, with guide-lines for actually using them in forecasting applications.


书籍目录:

Foreword by Clive Granger.

Preface.

1 Volatility Definition and Estimation.

 1.1 What is volatility?

 1.2 Financial market stylized facts.

 1.3 Volatility estimation.

  1.3.1 Using squared return as a proxy for daily volatility.

  1.3.2 Using the high–low measure to proxy volatility.

  1.3.3 Realized volatility, quadratic variation and jumps.

  1.3.4 Scaling and actual volatility.

 1.4 The treatment of large numbers.

2 Volatility Forecast Evaluation.

 2.1 The form of Xt.

 2.2 Error statistics and the form of εt.

 2.3 Comparing forecast errors of different models.

  2.3.1 Diebold and Mariano’s asymptotic test.

  2.3.2 Diebold and Mariano’s sign test.

  2.3.3 Diebold and Mariano’sWilcoxon sign-rank test.

  2.3.4 Serially correlated loss differentials.

 2.4 Regression-based forecast efficiency and orthogonality test.

 2.5 Other issues in forecast evaluation.

3 Historical Volatility Models.

 3.1 Modelling issues.

 3.2 Types of historical volatility models.

  3.2.1 Single-state historical volatility models.

  3.2.2 Regime switching and transition exponential smoothing.

 3.3 Forecasting performance.

4 Arch.

 4.1 Engle (1982).

 4.2 Generalized ARCH.

 4.3 Integrated GARCH.

 4.4 Exponential GARCH.

 4.5 Other forms of nonlinearity.

 4.6 Forecasting performance.

5 Linear and Nonlinear Long Memory Models.

 5.1 What is long memory in volatility?

 5.2 Evidence and impact of volatility long memory.

 5.3 Fractionally integrated model.

  5.3.1 FIGARCH.

  5.3.2 FIEGARCH.

  5.3.3 The positive drift in fractional integrated series.

  5.3.4 Forecasting performance.

 5.4 Competing models for volatility long memory.

  5.4.1 Breaks.

  5.4.2 Components model.

  5.4.3 Regime-switching model.

  5.4.4 Forecasting performance.

6 Stochastic Volatility.

 6.1 The volatility innovation.

 6.2 The MCMC approach.

  6.2.1 The volatility vector H.

  6.2.2 The parameter w.

 6.3 Forecasting performance.

7 Multivariate Volatility Models.

 7.1 Asymmetric dynamic covariance model.

 7.2 A bivariate example.

 7.3 Applications.

8 Black–Scholes.

 8.1 The Black–Scholes formula.

  8.1.1 The Black–Scholes assumptions.

  8.1.2 Black–Scholes implied volatility.

  8.1.3 Black–Scholes implied volatility smile.

  8.1.4 Explanations for the ‘smile’.

 8.2 Black–Scholes and no-arbitrage pricing.

  8.2.1 The stock price dynamics.

  8.2.2 The Black–Scholes partial differential equation.

  8.2.3 Solving the partial differential equation.

 8.3 Binomial method.

  8.3.1 Matching volatility with u and d.

  8.3.2 A two-step binomial tree and American-style options.

 8.4 Testing option pricing model in practice.

 8.5 Dividend and early exercise premium.

  8.5.1 Known and finite dividends.

  8.5.2 Dividend yield method.

  8.5.3 Barone-Adesi and Whaley quadratic approximation.

 8.6 Measurement errors and bias.

  8.6.1 Investor risk preference.

 8.7 Appendix: Implementing Barone-Adesi and Whaley’s efficient algorithm.

9 Option Pricing with Stochastic Volatility.

 9.1 The Heston stochastic volatility option pricing model.

 9.2 Heston price and Black–Scholes implied.

 9.3 Model assessment.

  9.3.1 Zero correlation.

  9.3.2 Nonzero correlation.

 9.4 Volatility forecast using the Heston model.

 9.5 Appendix: The market price of volatility risk.

  9.5.1 Ito’s lemma for two stochastic variables.

  9.5.2 The case of stochastic volatility.

  9.5.3 Constructing the risk-free strategy.

  9.5.4 Correlated processes.

  9.5.5 The market price of risk.

10 Option Forecasting Power.

 10.1 Using option implied standard deviation to forecast volatility.

 10.2 At-the-money or weighted implied?

 10.3 Implied biasedness.

 10.4 Volatility risk premium.

11 Volatility Forecasting Records.

 11.1 Which volatility forecasting model?

 11.2 Getting the right conditional variance and forecast with the ‘wrong’ models.

 11.3 Predictability across different assets.

  11.3.1 Individual stocks.

  11.3.2 Stock market index.

  11.3.3 Exchange rate.

  11.3.4 Other assets.

12 Volatility Models in Risk Management.

 12.1 Basel Committee and Basel Accords I & II.

 12.2 VaR and backtest.

  12.2.1 VaR.

  12.2.2 Backtest.

  12.2.3 The three-zone approach to backtest evaluation.

 12.3 Extreme value theory and VaR estimation.

  12.3.1 The model.

  12.3.2 10-day VaR.

  12.3.3 Multivariate analysis.

 12.4 Evaluation of VaR models.

13 VIX and Recent Changes in VIX.

 13.1 New definition for VIX.

 13.2 What is the VXO?

 13.3 Reason for the change.

14 Where Next?

Appendix.

References.

Index.


作者介绍:

Dr SER-HUANG POON was promoted to Professor of Finance at Manchester University in 2003. Prior to that, she was a senior lecturer at Strathclyde University. Ser-Huang graduated from the National University of Singapore and obtained her masters and PhD fro


出版社信息:

暂无出版社相关信息,正在全力查找中!


书籍摘录:

暂无相关书籍摘录,正在全力查找中!



原文赏析:

暂无原文赏析,正在全力查找中!


其它内容:

书籍介绍

Financial market volatility forecasting is one of today's most important areas of expertise for professionals and academics in investment, option pricing, and financial market regulation. While many books address financial market modelling, no single book is devoted primarily to the exploration of volatility forecasting and the practical use of forecasting models. A Practical Guide to Forecasting Financial Market Volatility provides practical guidance on this vital topic through an in-depth examination of a range of popular forecasting models. Details are provided on proven techniques for building volatility models, with guide-lines for actually using them in forecasting applications.


书籍真实打分

  • 故事情节:4分

  • 人物塑造:4分

  • 主题深度:5分

  • 文字风格:9分

  • 语言运用:7分

  • 文笔流畅:9分

  • 思想传递:5分

  • 知识深度:7分

  • 知识广度:8分

  • 实用性:8分

  • 章节划分:5分

  • 结构布局:6分

  • 新颖与独特:8分

  • 情感共鸣:8分

  • 引人入胜:3分

  • 现实相关:5分

  • 沉浸感:9分

  • 事实准确性:3分

  • 文化贡献:3分


网站评分

  • 书籍多样性:5分

  • 书籍信息完全性:9分

  • 网站更新速度:8分

  • 使用便利性:4分

  • 书籍清晰度:8分

  • 书籍格式兼容性:7分

  • 是否包含广告:6分

  • 加载速度:7分

  • 安全性:5分

  • 稳定性:4分

  • 搜索功能:3分

  • 下载便捷性:9分


下载点评

  • 已买(257+)
  • 无多页(513+)
  • 傻瓜式服务(578+)
  • 在线转格式(435+)
  • 微信读书(151+)
  • 内容齐全(526+)
  • 超值(203+)
  • 简单(446+)
  • 速度快(418+)
  • 品质不错(194+)

下载评价

  • 网友 詹***萍: ( 2024-12-28 22:31:50 )

    好评的,这是自己一直选择的下载书的网站

  • 网友 游***钰: ( 2025-01-11 16:35:12 )

    用了才知道好用,推荐!太好用了

  • 网友 丁***菱: ( 2024-12-28 21:27:08 )

    好好好好好好好好好好好好好好好好好好好好好好好好好

  • 网友 宓***莉: ( 2024-12-27 16:47:25 )

    不仅速度快,而且内容无盗版痕迹。

  • 网友 饶***丽: ( 2024-12-27 15:11:55 )

    下载方式特简单,一直点就好了。

  • 网友 通***蕊: ( 2025-01-13 10:17:19 )

    五颗星、五颗星,大赞还觉得不错!~~

  • 网友 曹***雯: ( 2024-12-26 22:18:42 )

    为什么许多书都找不到?

  • 网友 曾***文: ( 2025-01-13 10:19:56 )

    五星好评哦

  • 网友 訾***雰: ( 2024-12-20 21:47:34 )

    下载速度很快,我选择的是epub格式


随机推荐