书韵乐园 -深入理解TensorFlow:架构设计与实现原理
本书资料更新时间:2025-01-18 20:00:59

深入理解TensorFlow:架构设计与实现原理 epub 下载 pdf 网盘 2025 mobi 在线 免费

深入理解TensorFlow:架构设计与实现原理精美图片
》深入理解TensorFlow:架构设计与实现原理电子书籍版权问题 请点击这里查看《

深入理解TensorFlow:架构设计与实现原理书籍详细信息

  • ISBN:9787115480941
  • 作者:暂无作者
  • 出版社:暂无出版社
  • 出版时间:2018-5-1
  • 页数:354
  • 价格:79.00元
  • 纸张:暂无纸张
  • 装帧:暂无装帧
  • 开本:暂无开本
  • 语言:未知
  • 丛书:暂无丛书
  • TAG:暂无
  • 豆瓣评分:暂无豆瓣评分
  • 豆瓣短评:点击查看
  • 豆瓣讨论:点击查看
  • 豆瓣目录:点击查看
  • 读书笔记:点击查看
  • 原文摘录:点击查看
  • 更新时间:2025-01-18 20:00:59

内容简介:

本书以TensorFlow 1.2为基础,从基本概念、内部实现和实践等方面深入剖析了TensorFlow。书中首先介绍了TensorFlow设计目标、基本架构、环境准备和基础概念,接着重点介绍了以数据流图为核心的机器学习编程框架的设计原则与核心实现,紧接着还将TensorFlow与深度学习相结合,从理论基础和程序实现这两个方面系统介绍了CNN、GAN和RNN等经典模型,然后深入剖析了TensorFlow运行时核心、通信原理和数据流图计算的原理与实现,全面介绍了TensorFlow生态系统的发展。


书籍目录:

第 一部分 基础篇

第 1章 TensorFlow系统概述 2

1.1 简介 2

1.1.1 产生背景 2

1.1.2 独特价值 3

1.1.3 版本变迁 4

1.1.4 与其他主流深度学习框架的对比 6

1.2 设计目标 7

1.2.1 灵活通用的深度学习库 8

1.2.2 端云结合的人工智能引擎 9

1.2.3 高性能的基础平台软件 10

1.3 基本架构 12

1.3.1 工作形态 12

1.3.2 组件结构 13

1.4 小结 14

第 2章 TensorFlow环境准备 15

2.1 安装 15

2.1.1 TensorFlow安装概述 15

2.1.2 使用Anaconda安装 17

2.1.3 使用原生pip安装 17

2.1.4 使用virtualenv安装 18

2.1.5 使用Docker安装 19

2.1.6 使用源代码编译安装 20

2.1.7 Hello TensorFlow 22

2.2 依赖项 23

2.2.1 Bazel软件构建工具 24

2.2.2 Protocol Buffers数据结构序列化工具 25

2.2.3 Eigen线性代数计算库 27

2.2.4 CUDA统一计算设备架构 28

2.3 源代码结构 29

2.3.1 根目录 29

2.3.2 tensorflow目录 30

2.3.3 tensorflow/core目录 31

2.3.4 tensorflow/python目录 32

2.3.5 安装目录 33

2.4 小结 33

第3章 TensorFlow基础概念 34

3.1 编程范式:数据流图 34

3.1.1 声明式编程与命令式编程 34

3.1.2 声明式编程在深度学习应用上的优势 35

3.1.3 TensorFlow数据流图的基本概念 38

3.2 数据载体:张量 40

3.2.1 张量:Tensor 40

3.2.2 稀疏张量:SparseTensor 44

3.3 模型载体:操作 46

3.3.1 计算节点:Operation 46

3.3.2 存储节点:Variable 49

3.3.3 数据节点:Placeholder 53

3.4 运行环境:会话 55

3.4.1 普通会话:Session 55

3.4.2 交互式会话:InteractiveSession 59

3.4.3 扩展阅读:会话实现原理 59

3.5 训练工具:优化器 61

3.5.1 损失函数与优化算法 61

3.5.2 优化器概述 64

3.5.3 使用minimize方法训练模型 66

3.5.4 扩展阅读:模型训练方法进阶 68

3.6 一元线性回归模型的最佳实践 72

3.7 小结 76

第二部分 关键模块篇

第4章 TensorFlow数据处理方法 78

4.1 输入数据集 78

4.1.1 使用输入流水线并行读取数据 78

4.1.2 创建批样例数据的方法 86

4.1.3 填充数据节点的方法 87

4.1.4 处理CIFAR-10数据集的最佳实践 88

4.1.5 扩展阅读:MNIST数据集 91

4.2 模型参数 92

4.2.1 模型参数的典型使用流程 92

4.2.2 使用tf.Variable创建、初始化和更新模型参数 92

4.2.3 使用tf.train.Saver保存和恢复模型参数 98

4.2.4 使用变量作用域处理复杂模型 100

4.3 命令行参数 103

4.3.1 使用argparse解析命令行参数 103

4.3.2 使用tf.app.flags解析命令行参数 108

4.4 小结 111

第5章 TensorFlow编程框架 112

5.1 单机程序编程框架 112

5.1.1 概述 112

5.1.2 创建单机数据流图 114

5.1.3 创建并运行单机会话 116

5.2 分布式程序编程框架 118

5.2.1 PS-worker架构概述 118

5.2.2 分布式程序编程框架概述 120

5.2.3 创建TensorFlow集群 121

5.2.4 将操作放置到目标设备 124

5.2.5 数据并行模式 124

5.2.6 同步训练机制 125

5.2.7 异步训练机制 130

5.2.8 使用Supervisor管理模型训练 131

5.2.9 分布式同步训练的最佳实践 133

5.3 小结 137

第6章 TensorBoard可视化工具 138

6.1 概述 138

6.2 可视化数据流图 142

6.2.1 名字作用域与抽象节点 142

6.2.2 可视化数据流图的最佳实践 144

6.2.3 扩展阅读:汇总数据和事件数据 145

6.2.4 扩展阅读:揭秘tf.summary.FileWriter工作原理 147

6.3 可视化学习过程 149

6.3.1 汇总操作概述 149

6.3.2 使用tf.summary.scalar生成折线图 150

6.3.3 使用tf.summary.histogram生成数据分布图 152

6.3.4 使用tf.summary.image生成图像 154

6.3.5 使用tf.summary.audio生成音频 155

6.3.6 可视化MNIST softmax模型学习过程的最佳实践 156

6.4 可视化高维数据 158

6.4.1 使用TensorBoard可视化高维数据 158

6.4.2 可视化MNIST数据集的最佳实践 160

6.5 小结 163

第7章 模型托管工具:TensorFlow Serving 164

7.1 概述 164

7.2 系统架构 165

7.3 安装 167

7.3.1 使用APT安装ModelServer 168

7.3.2 使用源码编译安装ModelServer 169

7.4 最佳实践 170

7.4.1 导出模型 170

7.4.2 发布模型服务 173

7.4.3 更新线上模型服务 174

7.5 小结 175

第三部分 算法模型篇

第8章 深度学习概述 178

8.1 深度学习的历史 178

8.1.1 感知机模型与神经网络 178

8.1.2 神经网络的寒冬与复苏 179

8.1.3 神经网络的发展与第二次寒冬 181

8.1.4 深度学习时代的到来 183

8.2 深度学习的主要应用 184

8.2.1 计算机视觉 185

8.2.2 自然语言处理 186

8.2.3 强化学习 188

8.3 深度学习与TensorFlow 190

8.4 小结 191

第9章 CNN模型 192

9.1 CNN 192

9.1.1 CNN简介 192

9.1.2 卷积层 193

9.1.3 激活层 195

9.1.4 池化层 195

9.1.5 全连接层 196

9.1.6 Dropout层 196

9.1.7 BN层 197

9.1.8 常用的CNN图像分类模型 197

9.2 TensorFlow-Slim 204

9.2.1 TensorFlow-Slim总体结构 204

9.2.2 datasets包和data包 205

9.2.3 preprocessing包 207

9.2.4 deployment包 207

9.2.5 nets包 209

9.2.6 TensorFlow-Slim最佳实践 212

9.3 应用 216

9.3.1 物体检测 216

9.3.2 图像分割 221

9.4 小结 222

第 10章 GAN模型 223

10.1 原理、特点及应用 223

10.1.1 原理 224

10.1.2 特点 225

10.1.3 应用 226

10.2 GAN模型的改进 228

10.2.1 CGAN模型 228

10.2.2 LAPGAN模型 229

10.2.3 DCGAN模型 230

10.2.4 InfoGAN模型 230

10.2.5 LSGAN模型 231

10.2.6 WGAN模型 232

10.3 最佳实践 233

10.4 小结 238

第 11章 RNN模型 239

11.1 基本RNN单元及其变种 239

11.1.1 RNN模型简介 239

11.1.2 基本RNN单元 240

11.1.3 LSTM单元 242

11.1.4 GRU单元 243

11.1.5 双向RNN单元 244

11.1.6 带有其他特性的RNN单元 245

11.2 RNN模型 247

11.2.1 PTB-LSTM语言模型 247

11.2.2 Seq2Seq模型 251

11.3 小结 254

第四部分 核心揭秘篇

第 12章 TensorFlow运行时核心设计与实现 256

12.1 运行时框架概述 256

12.2 关键数据结构 257

12.2.1 张量相关数据结构 258

12.2.2 设备相关数据结构 260

12.2.3 数据流图相关的数据结构 263

12.3 公共基础机制 266

12.3.1 内存分配 266

12.3.2 线程管理 268

12.3.3 多语言接口 269

12.3.4 XLA编译技术 270

12.3.5 单元测试框架 271

12.4 外部环境接口 272

12.4.1 加速器硬件接口 272

12.4.2 系统软件接口 275

12.5 小结 276

第 13章 通信原理与实现 277

13.1 概述 277

13.2 进程内通信 278

13.2.1 通信接口 278

13.2.2 会合点机制 280

13.2.3 异构设备内存访问 282

13.3 进程间通信 283

13.3.1 gRPC通信机制 284

13.3.2 控制通信 286

13.3.3 数据通信 290

13.4 RDMA通信模块 294

13.4.1 模块结构 295

13.4.2 消息语义 296

13.4.3 通信流程 297

13.5 小结 300

第 14章 数据流图计算原理与实现 301

14.1 概述 301

14.2 数据流图创建 302

14.2.1 流程与抽象 303

14.2.2 全图构造 305

14.2.3 子图提取 306

14.2.4 图切分 307

14.2.5 图优化 308

14.3 单机会话运行 308

14.3.1 流程与抽象 309

14.3.2 执行器获取 311

14.3.3 输入数据填充 312

14.3.4 图运行 313

14.3.5 输出数据获取 315

14.3.6 张量保存 315

14.4 分布式会话运行 315

14.4.1 主-从模型 316

14.4.2 主要抽象 317

14.4.3 client创建会话 319

14.4.4 client请求图运行 320

14.4.5 master驱动图运行 321

14.4.6 worker实施图运行 323

14.5 操作节点执行 325

14.5.1 核函数抽象 325

14.5.2 CPU上的执行流程 326

14.5.3 CUDA GPU上的执行流程 326

14.6 小结 327

第五部分 生态发展篇

第 15章 TensorFlow生态环境 330

15.1 生态环境概况 330

15.1.1 社区托管组件 330

15.1.2 第三方项目 333

15.2 深度神经网络库Keras 334

15.2.1 概述 334

15.2.2 模型概述 335

15.2.3 顺序模型 336

15.2.4 函数式模型 338

15.3 TensorFlow与Kubernetes生态的结合 340

15.4 TensorFlow与Spark生态的结合 344

15.5 TensorFlow通信优化技术 345

15.6 TPU及神经网络处理器 348

15.7 NNVM模块化深度学习组件 349

15.8 TensorFlow未来展望——TFX 351

15.9 小结 353

附录A 354


作者介绍:

彭靖田,才云科技技术总监,谷歌机器学习开发专家(ML GDE),Kubeflow Core Maintainer,TensorFlow Contributor,曾一度成为TensorFlow社区全球前40的贡献者。加州大学圣迭戈分校访问学者,毕业于浙江大学竺可桢学院求是科学班。曾为华为深度学习团队核心成员,主要参与华为深度学习平台的设计和研发工作。

林健,华为深度学习团队系统工程师。在中科院计算所取得博士学位,并在美国俄亥俄州立大学做过博士后研究。长期从事系统软件研发,工作涉及高性能计算与分布式系统,爱好开源软件与人工智能。曾参与开发CNGrid GOS、MVAPICH等工业级软件,并合作创建LingCloud、DataMPI等开源项目。

白小龙,华为公司深度学习云服务的技术负责人,主要负责深度学习平台、模型和算法的研发。长期从事信号、图像处理和机器学习研究,于2015年6月毕业于浙江大学并取得工学博士学位,曾获教育部博士生学术新人奖。


出版社信息:

暂无出版社相关信息,正在全力查找中!


书籍摘录:

暂无相关书籍摘录,正在全力查找中!



原文赏析:

暂无原文赏析,正在全力查找中!


其它内容:

书籍介绍

本书以TensorFlow 1.2为基础,从基本概念、内部实现和实践等方面深入剖析了TensorFlow。书中首先介绍了TensorFlow设计目标、基本架构、环境准备和基础概念,接着重点介绍了以数据流图为核心的机器学习编程框架的设计原则与核心实现,紧接着还将TensorFlow与深度学习相结合,从理论基础和程序实现这两个方面系统介绍了CNN、GAN和RNN等经典模型,然后深入剖析了TensorFlow运行时核心、通信原理和数据流图计算的原理与实现,全面介绍了TensorFlow生态系统的发展。


书籍真实打分

  • 故事情节:3分

  • 人物塑造:9分

  • 主题深度:8分

  • 文字风格:6分

  • 语言运用:6分

  • 文笔流畅:7分

  • 思想传递:6分

  • 知识深度:5分

  • 知识广度:8分

  • 实用性:5分

  • 章节划分:6分

  • 结构布局:4分

  • 新颖与独特:9分

  • 情感共鸣:9分

  • 引人入胜:4分

  • 现实相关:7分

  • 沉浸感:4分

  • 事实准确性:9分

  • 文化贡献:7分


网站评分

  • 书籍多样性:7分

  • 书籍信息完全性:4分

  • 网站更新速度:9分

  • 使用便利性:3分

  • 书籍清晰度:9分

  • 书籍格式兼容性:4分

  • 是否包含广告:8分

  • 加载速度:4分

  • 安全性:6分

  • 稳定性:6分

  • 搜索功能:7分

  • 下载便捷性:4分


下载点评

  • 实惠(258+)
  • 服务好(106+)
  • 体验满分(636+)
  • epub(381+)
  • 值得下载(533+)
  • 无盗版(530+)
  • 盗版少(93+)
  • 赚了(194+)
  • 体验好(657+)

下载评价

  • 网友 温***欣: ( 2024-12-28 05:04:29 )

    可以可以可以

  • 网友 堵***洁: ( 2024-12-26 01:25:53 )

    好用,支持

  • 网友 后***之: ( 2024-12-23 01:57:39 )

    强烈推荐!无论下载速度还是书籍内容都没话说 真的很良心!

  • 网友 车***波: ( 2025-01-17 16:18:59 )

    很好,下载出来的内容没有乱码。

  • 网友 常***翠: ( 2025-01-12 06:02:01 )

    哈哈哈哈哈哈

  • 网友 苍***如: ( 2025-01-08 09:10:04 )

    什么格式都有的呀。

  • 网友 冯***丽: ( 2025-01-13 10:31:16 )

    卡的不行啊

  • 网友 家***丝: ( 2024-12-26 03:16:27 )

    好6666666

  • 网友 宫***凡: ( 2024-12-30 21:54:55 )

    一般般,只能说收费的比免费的强不少。


随机推荐